Red de Bibliotecas Virtuales de Ciencias Sociales en
América Latina y el Caribe

logo CLACSO

Por favor, use este identificador para citar o enlazar este ítem: https://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/51896
Título : Implementation of a computerized assessment system by using backpropagation neural networks with R and shiny
Palabras clave : Enseñanza universitaria;Métodos de enseñanza;Redes neuronales (Computadoras)
Editorial : Universidad del Pacífico. Centro de Investigación
Descripción : Las dificultades a las que los estudiantes se enfrentan y su lucha por dominar los temas, podría aumentar como consecuencia de la inadecuada utilización de materiales de evaluación. Generalmente se encuentran en el aula alumnos que hacen buen uso del material de los cursos y de una manera rápida, mientras que otros presentan dificultades con el aprendizaje del material. Esta situación es fácilmente visto en los resultados de los exámenes, un grupo de estudiantes podrían obtener buenas calificaciones animándoles, mientras que otros obtendrían la mala percepción de que los temas son difíciles, y en algunos casos, obligándolos a abandonar el curso o en otros casos a cambiar de carrera. Creemos que mediante el uso de técnicas de aprendizaje automático, y en nuestro caso la utilización de redes neuronales, sería factible crear un entorno de evaluación que podrían ajustarse a las necesidades de cada estudiante. Esto último disminuiría la sensación de insatisfacción de los alumnos y el abandono de los cursos.
The discouragement, that early undergraduate students suffer when they are faced to topics that they struggle to master, could increase owing by the use of inadequate evaluation materials. It is generally found that in the classroom there are students that manage to cope with the material of the courses in a quick manner, while others present difficulties while learning the material. This situation is easily spotted in the examination results, a group of students could get good marks encouraging them to tackle the course optimistically while others would get the wrong perception that the topics are difficulty, and in some cases, forcing them to leave the course or in other cases to change careers. We believe that by the use of machine learning techniques, and in our case the utilization of neural networks, it would be feasible to make an evaluation environment that could adjust to the needs of each student. The latter means that the system could auto tune the difficulty of the given questions to the students, allowing a more dynamic evaluation system which at the end would decrease the feeling of dissatisfaction and drop off the courses.
URI : http://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/51896
Otros identificadores : http://hdl.handle.net/11354/1087
Aparece en las colecciones: Centro de Investigación - UP - CIUP - Cosecha

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.