Repositorio Dspace

Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data

Mostrar el registro sencillo del ítem

dc.contributor Recursos Estratégicos Región y Dinámicas Socioambientales
dc.creator Muñetón Santa, Guberney
dc.creator Manrique Ruiz, Luis Carlos
dc.date 2023-05-10T18:34:59Z
dc.date 2023-05-10T18:34:59Z
dc.date 2023
dc.date.accessioned 2025-09-21T20:03:12Z
dc.date.available 2025-09-21T20:03:12Z
dc.identifier https://hdl.handle.net/10495/34949
dc.identifier 2076-0760
dc.identifier.uri https://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/258588
dc.description ABSTRACT: This paper presents a methodology to estimate the multidimensional poverty index using spatial data at the street block level. The data used in this study were obtained from Open Street Maps and ESA’s land use cover, which are freely available sources of spatial information. The study employs five machine-learning algorithms, including Catboost, Lightboost, and Random Forest, to estimate the multidimensional poverty index with spatial granularity. The results indicate that these models achieve promising performance in predicting poverty levels in Medellín, Colombia. The results showed that the Random Forest algorithm achieved the highest performance, with an MAE of 0.07504. Furthermore, the spatial distribution of the multidimensional poverty estimate was highly correlated with the true values of the distribution. This work contributes to predicting multidimensional poverty by demonstrating the potential of machine learning algorithms to utilize accessible spatial data. By providing evidence of the feasibility of estimating poverty levels at a granular spatial level, this methodology offers a powerful tool for policymakers to make poverty social interventions with low-cost evidence. Furthermore, this study has important implications for poverty eradication efforts in developing countries, where access to reliable data remains challenging.
dc.format 21
dc.format application/pdf
dc.format application/pdf
dc.language eng
dc.publisher MDPI
dc.relation 21
dc.relation 5
dc.relation 1
dc.relation 12
dc.relation Social Science
dc.rights https://creativecommons.org/licenses/by/4.0/
dc.rights http://creativecommons.org/licenses/by/2.5/co/
dc.rights info:eu-repo/semantics/openAccess
dc.rights http://purl.org/coar/access_right/c_abf2
dc.subject Multidimensional poverty index
dc.subject Spatial analysis
dc.subject Poverty
dc.subject Machine learning
dc.subject Indice de pobreza multidimensional
dc.subject Pobreza
dc.subject Análisis espacial
dc.subject Medellín, Colombia
dc.title Predicting multidimensional poverty with machine learning algorithms : an open data source approach using spatial data
dc.type Artículo de investigación
dc.type http://purl.org/coar/resource_type/c_2df8fbb1
dc.type https://purl.org/redcol/resource_type/ART
dc.type http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta

Estadísticas