Repositorio Dspace

Pricing Derivatives Securities with Prior Information on Long- Memory Volatility

Mostrar el registro sencillo del ítem

dc.creator Alejandro Islas Camargo
dc.creator Francisco Venegas Martínez
dc.date 2003
dc.date.accessioned 2022-03-22T16:07:32Z
dc.date.available 2022-03-22T16:07:32Z
dc.identifier http://www.redalyc.org/articulo.oa?id=32312104
dc.identifier.uri http://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/82834
dc.description This paper investigates the existence of long memory in the volatility of the Mexican stock market. We use a stochastic volatility (SV) model to derive statistical test for changes in volatility. In this case, estimation is carried out through the Kalman filter (KF) and the improved quasi-maximum likelihood (IQML). We also test for both persistence and long memory by using a long-memory stochastic volatility (LMSV) model, constructed by including an autoregressive fractionally integrated moving average (ARFIMA) process in a stochastic volatility scheme. Under this framework, we work up maximum likelihood spectral estimators and bootstraped confidence intervals. In the light of the empirical findings, we develop a Bayesian model for pricing derivative securities with prior information on long-memory volatility.
dc.format application/pdf
dc.language en
dc.publisher Centro de Investigación y Docencia Económicas, A.C.
dc.relation http://www.redalyc.org/revista.oa?id=323
dc.rights Economía Mexicana. Nueva Época
dc.source Economía Mexicana. Nueva Época (México) Num.1 Vol.XII
dc.subject Economía y Finanzas
dc.subject contingent pricing
dc.subject econometric modeling
dc.title Pricing Derivatives Securities with Prior Information on Long- Memory Volatility
dc.type artículo científico


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta

Estadísticas