Red de Bibliotecas Virtuales de Ciencias Sociales en
América Latina y el Caribe

logo CLACSO

Por favor, use este identificador para citar o enlazar este ítem: https://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/22408
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributorLobo Quintero, René Alejandro-
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001007017-
dc.contributorhttps://scholar.google.es/citations?hl=es#user=9vJhVRoAAAAJ-
dc.contributorhttps://orcid.org/0000-0003-2989-5357-
dc.contributorGrupo de Investigación Preservación e Intercambio Digital de Información y Conocimiento - Prisma-
dc.creatorJurado García, Miguel Eugenio-
dc.creatorPadilla Porras, Andrés Felipe-
dc.date2020-06-26T17:56:24Z-
dc.date2020-06-26T17:56:24Z-
dc.date2018-
dc.date.accessioned2022-03-14T20:14:00Z-
dc.date.available2022-03-14T20:14:00Z-
dc.identifierhttp://hdl.handle.net/20.500.12749/1315-
dc.identifierinstname:Universidad Autónoma de Bucaramanga - UNAB-
dc.identifierreponame:Repositorio Institucional UNAB-
dc.identifier.urihttp://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/22408-
dc.descriptionDebido al aumento de estudiantes en la universidad y el gran tamaño de los cursos, en especial los de cátedra de la facultad de medicina, se evidencia la necesidad de agilizar el proceso de toma de asistencia de los estudiantes y docentes. En este trabajo se especifican los requerimientos de un sistema de reconocimiento facial para la toma de asistencia automatizada en aulas de clase basado en redes neuronales convolucionales y se muestran resultados del desempeño del sistema en un aula de clase de la Universidad Autónoma de Bucaramanga.-
dc.description1. INTRODUCCIÓN 4 2. PLANTEAMIENTO DEL PROBLEMA 5 3. PLANTEAMIENTO DE LA SOLUCIÓN 6 4. OBJETIVOS 8 4.1. OBJETIVO GENERAL 8 4.2. OBJETIVOS ESPECIFICOS 8 5. RESULTADOS ESPERADOS 8 5.1. Objetivo específico 1 8 5.2. Objetivo específico 2 8 5.3. Objetivo específico 3 8 5.4. Objetivo específico 4 9 5.5. Objetivo específico 5 9 6. ESTADO DEL ARTE 10 7. MARCO TEORICO 22 7.1. Framework 22 7.2. Red neuronal 22 7.3. CNN 22 7.4. Darknet 23 7.5. Código QR 23 7.6. Zigbee 24 7.7. Minucia 24 7.8. Haar Features 24 7.9. Viola Jones 26 7.10. PCA (Principal Component Analysis) 26 7.11. LDA (Linear Discriminant Analysis) 27 7.12. DCT (Discrete Cosine Transform) por bloques 27 7.13. Raspberry 28 8. METODOLOGÍA 29 9. RESULTADOS OBTENIDOS 31 9.1. Objetivo específico 1 31 9.2. Objetivo específico 2 36 9.3. Objetivo específico 3 39 9.4. Objetivo específico 4 44 9.5. Objetivo específico 5 45 10. Conclusiones 53 11. REFERENCIAS 56 12. Anexos 59-
dc.descriptionPregrado-
dc.descriptionDue to the increase in students at the university and the large size of the courses, especially those of the faculty of medicine, the need to speed up the process of taking attendance of students and teachers is evident. In this work, the requirements of a facial recognition system for automated attendance taking in classrooms based on convolutional neural networks are specified and results of the performance of the system in a classroom of the Universidad Autónoma de Bucaramanga are shown.-
dc.formatapplication/pdf-
dc.formatapplication/pdf-
dc.languagespa-
dc.publisherUniversidad Autónoma de Bucaramanga UNAB-
dc.publisherFacultad Ingeniería-
dc.publisherPregrado Ingeniería de Sistemas-
dc.relationPadilla Porras, Andrés Felipe (2018). Sistema de reconocimiento facial con redes neuronales para la toma de asistencia en aulas de clase. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB-
dc.relationTalaviya, G., Ramteke, R., & Shete, A. (2013). Wireless Fingerprint Based College Attendance System Using Zigbee Technology. International Journal Of Engineering And Advanced Technology, (3), 201-203. Retrieved from https://pdfs.semanticscholar.org/a873/5eb75d3f1411798525fdc65875a8237b0c99.pdf-
dc.relationNawaz, T., Pervaiz, S., Korrani, A., & Ud-Din, A. (2009). Development of Academic Attendence Monitoring System Using Fingerprint Identification. International Journal Of Computer Science And Network Security, (9), 164-168. Retrieved from https://www.researchgate.net/profile/Tabassam_Nawaz/publication/242098052_Development_of_Academic_Attendence_Monitoring_System_Using_Fingerprint_Identification/links/5576abb008ae7521586c3c2b.pdf-
dc.relationMasalha, F., & Hirzallah, N. (2014). A Students Attendance System Using QR Code. International Journal Of Advanced Computer Science And Applications, (3), 75-79. Retrieved from https://thesai.org/Downloads/Volume5No3/Paper_10-A_Students_Attendance_System_Using_QR_Code.pdf-
dc.relationSajid, M., Hussain, R., & Usman, M. (2014). A conceptual Model For Automates Attendace Marking System Using Facial Recognition. Ninth International Conference on Digital Information Mangement (Págs. 7-10). Phitsanulok: IEEE.-
dc.relationMethi, D., Chauhan, A., & Gupta, D. (2017). Attendance System Using Face Recognition. International Journal Of Advanced Research In Science, Engineering And Technology, (4), 3897-3902. Retrieved from https://www.ijarset.com/upload/2017/may/11-IJARSET-DIVYAGUPTA.pdf-
dc.relationKawaguchi, Yohei & Shoji, Tetsuo. (2005). Face Recognition-based Lecture Attendance System, Retrieved from https://www.researchgate.net/publication/241608617_Face_Recognition-based_Lecture_Attendance_System-
dc.relationBalcoh, N., Yousaf, H., Ahmad, W., & Baig, I. (2012). Algorithm for Efficient Attendance Management: Face Recognition based approach. International Journal Of Computer Science Issues, 9(4), 146-150.-
dc.relationQrcode.com. (2017). History of QR Code | QRcode.com | DENSO WAVE. [online] Available at: http://www.qrcode.com/en/history/ [Accessed 21 Sep. 2017].-
dc.relationShiffman, D. (2013). The Nature of Code. 1st ed. Shannon Fry, p.445.-
dc.relationRouse, M. (2015). Framework. whatis. Retrieved 23 September 2017, from http://whatis.techtarget.com/definition/framework-
dc.relationWhat is Zigbee?. (2014). Zigbee Alliance. Retrieved 23 September 2017, from http://www.zigbee.org/what-is-zigbee/-
dc.relationViola, P., & Jones, M. (2004). Robust Real-Time Face Detection. International Journal Of Computer Vision, 57(2), 137-154.-
dc.relationCireșan, D., Meier, U., Masci, J., Gambardella, L. and Schmidhuber, J. (2011). Flexible, High Performance Convolutional Neural Networks for Image Classification. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, [online] 2, pp.1237-1242. Available at: http://people.idsia.ch/~juergen/ijcai2011.pdf [Accessed 20 Sep. 2017].-
dc.relationGimeno Hernández, R. (2010). Estudio de técnicas de Reconocimiento facial.-
dc.relationRaspberry Pi. (2017). What is a Raspberry Pi?. [online] Available at: https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/ [Accessed 2 Oct. 2017].-
dc.relationAbdallah, A. S., Abbott, A. L., & El-Nasr, M. A. (2007, May). A new face detection technique using 2D DCT and self organizing feature map. In Proc. of World Academy of Science, Engineering and Technology (Vol. 21, pp. 15-19)-
dc.relationThe Database of Faces. (2002). The Database of Faces. [online] Available at: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html [Accessed 5 Sep. 2017]-
dc.relationBelongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE transactions on pattern analysis and machine intelligence, 24(4), 509-522-
dc.relationBelhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on pattern analysis and machine intelligence, 19(7), 711-720.-
dc.relationAdini, Y., Moses, Y., & Ullman, S. (1997). Face recognition: The problem of compensating for changes in illumination direction. IEEE Transactions on pattern analysis and machine intelligence, 19(7), 721-732.-
dc.relationPhillips, P. J. (1999). Support vector machines applied to face recognition. In Advances in Neural Information Processing Systems(pp. 803-809).-
dc.relationLiu, C., & Wechsler, H. (2000). Evolutionary pursuit and its application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(6), 570-582.-
dc.relationGordon, G. G. (1991, September). Face recognition based on depth maps and surface curvature. In Geometric Methods in Computer Vision (Vol. 1570, pp. 234-248). International Society for Optics and Photonics.-
dc.relationLawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE transactions on neural networks, 8(1), 98-113.-
dc.relationSimonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.-
dc.relationCourbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830.-
dc.relationShyam, R., & Singh, Y. N. (2014, December). Evaluation of eigenfaces and fisherfaces using bray curtis dissimilarity metric. In Industrial and Information Systems (ICIIS), 2014 9th International Conference on (pp. 1-6). IEEE.-
dc.relationRedmon, J., & Angelova, A. (2015, May). Real-time grasp detection using convolutional neural networks. In Robotics and Automation (ICRA), 2015 IEEE International Conference on (pp. 1316-1322). IEEE.-
dc.relationHongxun, Y., Wen, G., Mingbao, L., & Lizhuang, Z. (2000). Eigen features technique and its application. In Signal Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference on (Vol. 2, pp. 1153-1158). IEEE.-
dc.relationBedre, J. S., & Sapkal, S. (2012). Comparative Study of Face Recognition Techniques: A Review. Emerging Trends in Computer Science and Information Technology–2012 (ETCSIT2012) Proceedings published in International Journal of Computer Applications®(IJCA), 12.-
dc.relationHeiselet, B., Serre, T., Pontil, M., & Poggio, T. (2001). Component-based face detection. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I-I). IEEE.-
dc.relationVirdee-Chapman, B. (2017). Face Recognition: Kairos vs Microsoft vs Google vs Amazon vs OpenCV. Kairos. Retrieved 30 October 2017, from https://www.kairos.com/blog/face-recognition-kairos-vs-microsoft-vs-google-vs-amazon-vs-opencv-
dc.relationHan, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques (3rd ed.). Elsevier.-
dc.relationHan, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques (3rd ed.). Elsevier.-
dc.relationClassification Performance Metrics - NLP-FOR-HACKERS. (2018). Retrieved from https://nlpforhackers.io/classification-performance-metrics/-
dc.relationAtribución-NoComercial-SinDerivadas 2.5 Colombia-
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/-
dc.rightsAbierto (Texto Completo)-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightshttp://purl.org/coar/access_right/c_abf2-
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia-
dc.subjectPerception of faces-
dc.subjectFacial recognition-
dc.subjectNeural Networks-
dc.subjectComputers-
dc.subjectArtificial intelligence-
dc.subjectSystems Engineering-
dc.subjectInvestigations-
dc.subjectAnalysis-
dc.subjectArtificial vision-
dc.subjectAutomation-
dc.subjectNeural networks-
dc.subjectArtificial intelligence-
dc.subjectPercepción de caras-
dc.subjectReconocimiento facial-
dc.subjectRedes neuronales-
dc.subjectComputadores-
dc.subjectInteligencia artificial-
dc.subjectIngeniería de sistemas-
dc.subjectInvestigaciones-
dc.subjectAnálisis-
dc.subjectInteligencia artificial-
dc.subjectRedes neuronales-
dc.subjectAutomatización-
dc.subjectVisión artificial-
dc.titleSistema de reconocimiento facial con redes neuronales para la toma de asistencia en aulas de clase-
dc.titleFacial recognition system with neural networks for taking assistance in classrooms-
dc.typeinfo:eu-repo/semantics/bachelorThesis-
dc.typeTrabajo de Grado-
dc.typehttp://purl.org/coar/resource_type/c_7a1f-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.typehttp://purl.org/redcol/resource_type/TP-
dc.coverageBucaramanga (Colombia)-
Aparece en las colecciones: Instituto de Estudios Políticos - IEP - Cosecha

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.