Red de Bibliotecas Virtuales de Ciencias Sociales en
América Latina y el Caribe
Por favor, use este identificador para citar o enlazar este ítem:
https://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/169112
Título : | Insights on fault reactivation during the 2019 November 11, M-w 4.9 Le Teil earthquake in southeastern France, from a joint 3-D geological model and InSAR time-series analysis |
Palabras clave : | Radar interferometry;Seismic cycle;Inverse theory;Time-series analysis;Earthquake source observations;Continental neotectonics |
Descripción : | The 2019, M-w 4.9 Le Teil earthquake occurred in southeastern France, causing substantial damage in this slow deforming region. Field observations, remote sensing and seismological studies following the event revealed that coseismic slip concentrates at shallow depth along a similar to 5 km long rupture associated with surface breaks and a thrusting mechanism. We further investigate this earthquake by combining geological field mapping, 3-D geology, InSAR time-series analysis and a coseismic slip inversion. From structural, stratigraphic and geological data collected around the epicentre, we first produce a 3-D geological model of the region surrounding the rupture using the GeoModeller software. Our model includes the geometry of the geological layers and the main faults, including the La Rouviere Fault, (LRF) the Oligocene normal fault that ruptured during the earthquake. We generate a time-series of surface displacement from Sentinel-1 SAR data ranging from early 2019 January to late 2020 January using the NSBAS processing chain. The spatio-temporal patterns of surface displacement for this time span show neither a clear pre-seismic signal nor significant post-seismic transient deformation. We extract the coseismic displacement pattern from the InSAR time-series, highlighting along-strike variations of coseismic surface slip. The maximum relative displacement along the line of sight is up to similar to 16 cm and is located in the southwestern part of the rupture. We invert for the slip distribution on the fault from the InSAR coseismic surface displacement field. Constraining our fault geometry from the geological model, acceptable fault dip ranges between 55 degrees and 60 degrees. Our model confirms the reactivation of LRF, with reverse slip at very shallow depth and two main slip patches reaching, respectively, 30 and 24 cm of slip, both around 500 m depth. We finally discuss how the 3-D fault geometry and geological structure may have impacted the slip distribution and propagation during the earthquake. This study is a step to reassess the seismic hazard of the many faults similar to the La Rouviere one along the Cevennes fault system, in a densely populated area hosting several sensitive nuclear sites. |
URI : | http://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/169112 |
Otros identificadores : | https://www.documentation.ird.fr/hor/fdi:010084415 oai:ird.fr:fdi:010084415 Marconato L., Leloup P. H., Lasserre C., Jolivet R., Caritg S., Grandin R., Metois M., Cavalie O., Audin Laurence. Insights on fault reactivation during the 2019 November 11, M-w 4.9 Le Teil earthquake in southeastern France, from a joint 3-D geological model and InSAR time-series analysis. 2022, 229 (2), p. 758-775 |
Aparece en las colecciones: | Institut de Recherche pour le Développement - IRD - Cosecha |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.