Red de Bibliotecas Virtuales de Ciencias Sociales en
América Latina y el Caribe

logo CLACSO

Por favor, use este identificador para citar o enlazar este ítem: https://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/169085
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorGasmi, A.-
dc.creator/Gomez, Cécile-
dc.creator/Chehbouni, Abdelghani-
dc.creatorDhiba, D.-
dc.creatorElfil, H.-
dc.date2022-
dc.date.accessioned2022-04-27T17:37:46Z-
dc.date.available2022-04-27T17:37:46Z-
dc.identifierhttps://www.documentation.ird.fr/hor/fdi:010084516-
dc.identifieroai:ird.fr:fdi:010084516-
dc.identifierGasmi A., Gomez Cécile, Chehbouni Abdelghani, Dhiba D., Elfil H.. Satellite multi-sensor data fusion for soil clay mapping based on the spectral index and spectral bands approaches. 2022, 14 (5), p. 1103 [22 p.]-
dc.identifier.urihttp://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/169085-
dc.descriptionIntegrating satellite data at different resolutions (i.e., spatial, spectral, and temporal) can be a helpful technique for acquiring soil information from a synoptic point of view. This study aimed to evaluate the advantage of using satellite mono- and multi-sensor image fusion based on either spectral indices or entire spectra to predict the topsoil clay content. To this end, multispectral satellite images acquired by various sensors (i.e., Landsat-5 Thematic Mapper (TM), Landsat-8 Operational Land Imager (OLI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Sentinel2-MultiSpectral Instrument (S2-MSI)) have been used to assess their potential in identifying bare soil pixels over an area in northeastern Tunisia, the Lebna and Chiba catchments. A spectral index image and a spectral bands image are generated for each satellite sensor (i.e., TM, OLI, ASTER, and S2-MSI). Then, two multi-sensor satellite image fusions are generated, one from the spectral index images and the other from spectral bands. The resulting spectral index and spectral band images based on mono-and multi-sensor satellites are compared through their spectral patterns and ability to predict the topsoil clay content using the Multilayer Perceptron with backpropagation learning algorithm (MLP-BP) method. The results suggest that for clay content prediction: (i) the spectral bands' images outperformed the spectral index images regardless of the used satellite sensor; (ii) the fused images derived from the spectral index or bands provided the best performances, with a 10% increase in the prediction accuracy; and (iii) the bare soil images obtained by the fusion of many multispectral sensor satellite images can be more beneficial than using mono-sensor images. Soil maps elaborated via satellite multi-sensor data fusion might become a valuable tool for soil survey, land planning, management, and precision agriculture.-
dc.languageEN-
dc.subjectspectral index-
dc.subjectspectral band-
dc.subjectmultispectral remote sensing-
dc.subjectmulti-sensors data fusion-
dc.subjectdigital soil mapping-
dc.subjectclay content-
dc.titleSatellite multi-sensor data fusion for soil clay mapping based on the spectral index and spectral bands approaches-
dc.typetext-
Aparece en las colecciones: Institut de Recherche pour le Développement - IRD - Cosecha

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.