Red de Bibliotecas Virtuales de Ciencias Sociales en
América Latina y el Caribe

logo CLACSO

Por favor, use este identificador para citar o enlazar este ítem: https://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/169083
Título : Irrigation mapping on two contrasted climatic contexts using Sentinel-1 and Sentinel-2 data
Palabras clave : Sentinel-1;Sentinel-2;irrigation map;support vector machine
Descripción : This study aims to propose an operational approach to map irrigated areas based on the synergy of Sentinel-1 (S1) and Sentinel-2 (S2) data. An application is proposed at two study sites in Europe-in Spain and in Italy-with two climatic contexts (semiarid and humid, respectively), with the objective of proving the essential role of multi-site training for a robust application of the proposed methodologies. Several classifiers are proposed to separate irrigated and rainfed areas. They are based on statistical variables from Sentinel-1 and Sentinel-2 time series data at the agricultural field scale, as well as on the contrasted behavior between the field scale and the 5 km surroundings. The support vector machine (SVM) classification approach was tested with different options to evaluate the robustness of the proposed methodologies. The optimal number of metrics found is five. These metrics illustrate the importance of optical/radar synergy and the consideration of multi-scale spatial information. The highest accuracy of the classifications, approximately equal to 85%, is based on training dataset with mixed reference fields from the two study sites. In addition, the accuracy is consistent at the two study sites. These results confirm the potential of the proposed approaches towards the most general use on sites with different climatic and agricultural contexts.
URI : http://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/169083
Otros identificadores : https://www.documentation.ird.fr/hor/fdi:010084518
oai:ird.fr:fdi:010084518
Elwan E., Le Page Michel, Jarlan Lionel, Baghdadi N., Brocca L., Modanesi S., Dari J., Segui P. Q., Zribi M.. Irrigation mapping on two contrasted climatic contexts using Sentinel-1 and Sentinel-2 data. 2022, 14 (5), 804 [13 p.]
Aparece en las colecciones: Institut de Recherche pour le Développement - IRD - Cosecha

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.