Red de Bibliotecas Virtuales de Ciencias Sociales en
América Latina y el Caribe
Por favor, use este identificador para citar o enlazar este ítem:
https://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/157571
Título : | Characterizing variational thinking from problem resolution and the grounded theory Caracterizando el pensamiento variacional desde la resolución de problemas y la teoría fundamentada |
Palabras clave : | Variational Thinking;Problem Solving;Grounded Theory;Diophantine Linear Equations;Pensamiento Variacional;Resolución de Problemas;Teoría Fundamentada;Ecuaciones Lineales diofánticas |
Editorial : | Red Iberoamericana de Pedagogía |
Descripción : | The purpose of the research was to contribute to the characterization of the variational thinking manifested by a group of 24 students who are training to become mathematics teachers, when they solve problems involving linear diophantine equations of the form ax+by=c. The study had a qualitative approach with a grounded theory design. The methodological strategy was composed of a parallel work between three interventions that grouped 11 didactic activities as data sources, the processes of open, axial, selective coding and data analysis always permeated by the method of constant comparison, which led to sampling and theoretical saturation. The findings show the variational way of thinking of the participants when from substitutions and combinations of integers in the equation, they establish links and relationships that lead them to formalize, generalize and prove. As a result, variational thinking was characterized as a process in problem solving, made up of the subprocesses transforming, formalizing, generalizing and proving variationally. The results imply that it is possible to continue advancing in characterizing variational thinking from different contexts and different domains. La investigación sirve el propósito de realizar aportes en la caracterización del pensamiento variacional manifestado por un grupo de 24 estudiantes que se forman para ser profesores de matemáticas, cuando resuelven problemas que involucran ecuaciones lineales diofánticas de la forma ax+by = c . El estudio tuvo un enfoque cualitativo con un diseño desde la teoría fundamentada. La estrategia metodológica, estuvo compuesta por un trabajo paralelo entre tres intervenciones que agruparon actividades didácticas como fuentes de datos, los procesos de codificación abierta, axial, selectiva y el análisis de datos permeados siempre por el método de comparación constante, que condujo al muestreo y saturación teórica. Los hallazgos evidencian la forma de pensar variacional de los participantes cuando a partir de sustituciones y combinaciones de números enteros en la ecuación, establecen nexos y relaciones que los llevan a formalizar, generalizar y probar. Como resultado se caracterizó el pensamiento variacional como proceso en la resolución de problemas, conformado por los subprocesos transformar, formalizar, generalizar y probar variacionalmente. Los resultados implican que es posible seguir avanzando en caracterizar el pensamiento variacional desde diversos contextos.y diferentes dominios. |
URI : | http://biblioteca-repositorio.clacso.edu.ar/handle/CLACSO/157571 |
Otros identificadores : | https://revista.redipe.org/index.php/1/article/view/1267 10.36260/rbr.v10i4.1267 |
Aparece en las colecciones: | Red Iberoamericana de Pedagogía - REDIPE - Cosecha |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.